An Empirical Comparison of Machine Learning Techniques in Predicting the Bug Severity of Open and Closed Source Projects
نویسندگان
چکیده
Bug severity is the degree of impact that a defect has on the development or operation of a component or system, and can be classified into different levels based on their impact on the system. Identification of severity level can be useful for bug triager in allocating the bug to the concerned bug fixer. Various researchers have attempted text mining techniques in predicting the severity of bugs, detection of duplicate bug reports and assignment of bugs to suitable fixer for its fix. In this paper, an attempt has been made to compare the performance of different machine learning techniques namely Support vector machine (SVM), probability based Naïve Bayes (NB), Decision Tree based J48 (A Java implementation of C4.5), rule based Repeated Incremental Pruning to Produce Error Reduction (RIPPER) and Random Forests (RF) learners in predicting the severity level (1 to 5) of a reported bug by analyzing the summary or short description of the bug reports. The bug report data has been taken from NASA’s PITS (Projects and Issue Tracking System) datasets as closed source and components of Eclipse, Mozilla & GNOME datasets as open source projects. The analysis has been carried out in RapidMiner and STATISTICA data mining tools. The authors measured the performance of different machine learning techniques by considering (i) the value of accuracy and F-Measure for all severity level and (ii) number of best cases at different threshold level of accuracy and F-Measure. An Empirical Comparison of Machine Learning Techniques in Predicting the Bug Severity of Open and Closed Source Projects
منابع مشابه
Reachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملAutomatic bug triage using text categorization
Bug triage, deciding what to do with an incoming bug report, is taking up increasing amount of developer resources in large open-source projects. In this paper, we propose to apply machine learning techniques to assist in bug triage by using text categorization to predict the developer that should work on the bug based on the bug’s description. We demonstrate our approach on a collection of 15,...
متن کاملComparison of Open Source Learning Management Softwares and Presenting a Native Evaluation Tool
Introduction: Nowadays all educational institutes are trying to use technology in their structure. This effort has been faced with different barriers, including cost, time, and support. Therefore, using open source softwares can partially help us in using technology. In this article, we review main features of several open source learning management softwares, while presenting a tool which incl...
متن کاملMachine Learning or Information Retrieval Techniques for Bug Triaging: Which is better?
Bugs are the inevitable part of a software system. Nowadays, large software development projects even release beta versions of their products to gather bug reports from users. The collected bug reports are then worked upon by various developers in order to resolve the defects and make the final software product more reliable. The high frequency of incoming bugs makes the bug handling a difficul...
متن کاملLearning from evolving data streams: online triage of bug reports
Open issue trackers are a type of social media that has received relatively little attention from the text-mining community. We investigate the problems inherent in learning to triage bug reports from time-varying data. We demonstrate that concept drift is an important consideration. We show the effectiveness of online learning algorithms by evaluating them on several bug report datasets collec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJOSSP
دوره 4 شماره
صفحات -
تاریخ انتشار 2012